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ABSTRACT 

This study investigates whether a fuzzy clustering method is of 
any practical value in delineating urban housing submarkets 
relative to clustering methods based on classic (or crisp) set 
theory. A fuzzy c-means algorithm is applied to obtain fuzzy set 
membership degree of census tracts to housing submarkets 
defined within a metropolitan area. Issues of choosing algorithm 
parameters are discussed on the basis of applying fuzzy 
clustering to 85 metropolitan areas in the U.S. The comparison 
between results of fuzzy clustering and those of crisp set 
counterpart shows that fuzzy clustering yields statistically more 
desirable clusters. 

Categories and Subject Descriptors 

I.5.3 [Pattern Recognition]  

General Terms 

Algorithms, Performance  

Keywords 
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1. INTRODUCTION 
This study attempts to examine the potential of fuzzy clustering 
in enriching methods for identifying housing submarkets. 
Identifying housing submarkets have many pragmatic values. It 
concisely reveals socio-demographic structure of city, and helps 
understand geographic process surrounding neighborhood 
formation. The most commonly used method for identifying 
housing submarkets (see [19] for the survey) is based on the 
hedonic analysis followed by cluster analysis. Hedonic analysis 
[11] [13] is used to derive dimensionality of housing market by 
estimating what array of attributes would be significant factors 

influencing housing price; those predictors of housing price 
provide input vector for cluster analysis (or clustering), defining 
the dimension of attribute space in which clustering is 
conducted.  

Clustering methods can be roughly classified into hierarchical 
method and partitioning method [20]. Partitioning clustering can 
be divided into exclusive and overlapping methods depending 
on which set theory the algorithm is built on. Exclusive 
clustering (e.g., k-means) is built on classic set theory where an 
element is an exclusive member of a set. Overlapping clustering 
is based on fuzzy set theory where an element can be a member 
of one or more sets. For instance, some aggregate unit of 
housing (mainly delineated by census unit) is composed of a mix 
of different housing types and diverse demographics. In such 
cases, it is logical to consider that the housing unit belongs to 
more than one housing submarket. This study examines whether 
fuzzification offers any advantage to methodology for (housing) 
market segmentation over counterpart based on classic set 
theory.  

The validity of clustering results varies by algorithm parameter 
values. The effect of parameter values (such as the number of 
clusters c and fuzziness exponent m) on clustering results has 
not been entirely understood by any token [14]. Recent years 
have observed a growth in researches on cluster validity index; 
body of literature under this line of research aims at developing 
an index by which the optimality of parameter values is 
determined [1] [2] [21] [18]; see [10] for the survey of cluster 
validity index. In practice, choosing the optimal number of 
housing submarkets or degree of fuzzification for classification 
is not a straightforward task. It is unquestionable that clustering 
algorithms should be equipped with a mechanism for self-
validation. This study explores the route in which way fuzzy 
clustering can be improved with regard to validating results in 
response to parameter values.  

The objectives of this study are threefold. First, this paper will 
demonstrate how fuzzy clustering is applied to identifying 
housing submarkets. The methodology described in this paper 
can be generalized as market segmentation techniques. We focus 
on classifying aggregate census units to housing submarkets 
drawing upon researches from housing studies and pattern 
recognition field. It is notable that this study can fill the gap in 
the application of fuzzy set theory to social science. Second, the 
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paper presents findings on empirical behaviors of fuzzy c-means 
algorithm in the particular application over a range of parameter 
values. Focus will be placed on validating clustering results on 
the basis of cluster validity index, as a means to make the choice 
of parameter values non-arbitrary. Results further allow us to 
make comparative assessment of fuzzy clustering in different 
application areas (e.g., housing market segmentation using 
census data vs. land use classification using satellite image). 
Third, the study examines whether fuzzy clustering outperforms 
traditional clustering methods based on classic set theory. 85 
empirical cases will help evaluate the performance of fuzzy 
clustering. Such way, the utility of fuzzy clustering in (housing) 
market segmentation techniques can be better informed.   

Remainder of this paper is organized as follows. We begin with 
describing a fuzzy c-means algorithm that forms the basis of this 
study in Section 2. Then the fuzzy clustering-based 
methodology for classifying housing market is described in 
Section 3. In Section 4, the methodology is illustrated using the 
case of Buffalo-Niagara Falls MSA (Metropolitan Statistical 
Area). We report statistical significance test results to determine 
whether fuzzy clustering produces better results than traditional 
methods based on 85 sample metropolitan areas in the U.S. 
Finally, we conclude this study by summarizing the work, and 
remarking on future research. 

2. FUZZY CLUSTERING 
In operational terms, fuzzy clustering can be described as the 
problem of determining the fuzzy set membership of data point k 
to cluster i [3]. The total number of data points can be denoted 
by n, and the a priori specified number of clusters can be 
denoted by c. Fuzzy partition U of data points is obtained such 
that the following objective function can be minimized: 
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where uik is the membership degree of data point k to cluster i, xk 
is the vector of data point, vi is the ith cluster center (1 ≤ i ≤ c), 

and m is the fuzziness exponent (m ∈ [1, ∞]). Cluster 
membership is fuzzier when m is larger. If m is 1, it becomes 
hard (i.e., crisp set-based) clustering. In a sense, hard clustering 
(e.g., k-means) can be seen as a special case of fuzzy clustering. 
Therefore, both methods can be described under the rubric of 
fuzzy clustering algorithm. Necessary conditions for solutions to 
Eq. 1 are 
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where uik and vi are updated at each iteration until the difference 
between the current uik and the previous uik is less than a 

predefined cut-off threshold εL (i.e., convergence criteria). The 
fuzzy c-means algorithm can be stated as follows: 

Algorithm 1 Fuzzy c-means algorithm from [3] 

Step 1: Fix c, 2 ≤ c < n; and fix m, 1 ≤ m < ∞, Initialize U(0) so 
that it becomes the fuzzy matrix. Then at step l, 1 = 0, 1, 2, 

….;  

Step 2: Calculate the c fuzzy cluster centers {vi
(l)} with (Eq. 2) 

and U(l) 

Step 3: Update U(l+1) using (Eq. 3) and {vi
(l)} 

Step 4: Compare U(l) to U(l+1) in a matrix norm; if ||U(l+1) – U(l)|| 

≤ εL stop. Otherwise, return to Step 2. 

 

Algorithm 1 attempts to find the optimal fuzzy partition given a 
fixed value of c. The fuzzy c-means algorithm stated above does 
not address what value of c is optimal for the fuzzy partitioning 
of the instances. The criterion used to evaluate the optimal 
number of cluster can be formulated as a fuzzy cluster validity 
index. Cluster validity index has been proposed by many 
researchers since fuzzy clustering was introduced. Despite 
recent growth in this line of research, the search for a robust 
validity index remains open.  

The literature on fuzzy clustering algorithms fails to suggest any 
standard procedures for determining an appropriate value of m. 
Instead, the rule of thumb of a value in the range [1.5, 2.5] is 
recommended in the pattern recognition literature [14]. It is not 
known whether such a range would work for different domains 
such as the classification of geographically defined housing 
markets. Therefore, empirical tests are needed to calibrate the 
range of fuzziness exponent m that is appropriate to the 
application in hand.  

3. DELINEATING HOUSING 

SUBMARKETS 
In this section we present the methodology for delineating 
housing submarkets defined within a metropolitan area. The 
problem is to partition a metropolitan area (as a single housing 
market) into the most homogeneous housing submarkets. The 
methodology is divided into two steps. The first step is to 
identify what constitutes dimensionality of housing market. 
Hedonic analysis is conducted to extract predictors of housing 
price. The predictors form the vector of data point xk required 
for the next step, that is clustering. We extend fuzzy c-means 
algorithm so that the optimality of parameters c and m can be 
tested. Therefore, fuzzy clustering algorithm to be described 
below maps the fuzzy set membership degree of each data point 
(census tract in this study) to housing submarkets given a range 
of parameter values c and m.  

3.1 Hedonic Analysis 
The considerable literature on hedonic analysis indicates that 
housing price is associated with socioeconomic characteristics 
of residents, structural characteristics of housing units, and 
locational characteristics of neighborhoods [5] [7]. An array of 
variables considered to determine house prices are compiled at a 
census tract level in this study. Candidate explanatory variables 
for hedonic analysis are listed in Table 1. They encompass 
economic indicator, educational attainment, occupation, life 
cycle, characteristics of housing units, ethnicity, length of 
residence, school quality, crime, and job accessibility.  

Data sources for this analysis include the U.S. Population and 
Housing Census, school district surveys, crime reports, and 
Census Transportation Planning Package. Variables unavailable 



  

at the level of Census Tract (e.g., crime, school quality) are 
aggregated to Census Tract level by spatial overlay in 
Geographic Information Systems (GIS). Job accessibility 
(jobacm) is calculated following the gravity model [9] where 
travel time is used as a measure of spatial separation. Spatial 
impedance parameters are calibrated using maximum likelihood 
estimation [8].  

 

Table 1 Candidate Predictors of Housing Price 

VarNM Variable Definition Data Year 
   pcincome per capita income Census 2000 

   college % college degree Census 2000 

   managep % management workers Census 2000 

   prodp % production workers Census 2000 

   famcpchl % family with children Census 2000 

   nfmalone % nonfamily living alone Census 2000 

   black_p % black Census 2000 

   nhwht_p % non-hispanic white Census 2000 

   nativebr % native born Census 2000 

   medroom median number of room Census 2000 

   hudetp % detached housing unit Census 2000 

   yrhublt median year structure built Census 2000 

   ptratio pupil to teacher ratio NCES* 2002 

   schexp school expenditure per student NCES  2002 

   vrlcrime violent crime rate FBI** 2003 

   prpcrime property crime rate FBI 2003 

   jobacm job accessibility  CTPP*** 2000 

* National Center for Education Statistics, Common Core of Data 

** FBI’s annual report, “Crime in the United States 2003” 

*** Census Transportation Planning Package 

Stepwise regression is employed as a method of hedonic 
analysis to control for multicollinearity. Stepwise regression is 
chosen over factor analysis mainly because results of statistical 
analysis are more easily interpreted [15]. The dependent variable 
of the census tract-level hedonic analysis is the median price of 
owner-occupied housing units. U.S. homeownership rate was 
68.6 percent in the fourth quarter of 2003 [12]. When the value 
of dependent variable is missing, the value for the corresponding 
census tract is either excluded (e.g., park) or derived for the 
analysis using the simple regression model based on the 
relationship with median rent (e.g., downtown). This treatment 
of missing values turned out to make cluster analysis results 
more reliable. Clustering results were highly sensitive to 
untreated outliers.  

3.2 Clustering 
The result of hedonic analysis (i.e., a set of significant price 
predictors selected from Table 1) is fed into fuzzy clustering. 
The vector comprised of selected predictors of house price is 
converted into z-score for normalization. The dimensions of 
clustering algorithms will vary since the number of selected 
predictors will differ by a metropolitan area. For instance, it is 
likely that large metropolitan areas will be divided into housing 
submarkets in attribute space of higher dimensionality than 
small metropolitan areas. Likewise, the optimal number of 
housing submarkets (denoted by c*) in a particular metropolitan 
area is likely to vary. It is quite conceivable that the quality of 
clustering will vary as the number of cluster c changes. This 

leads us to examine the procedure for the statistically superior 
choice of c.  

Cluster validity index is used to determine the optimal number 
of clusters c* and m*.  In general, cluster validity indices 
measure statistical properties of clustering results; they are 
largely formulated as a function of compactness within a cluster 
and/or separation between clusters. In the subsequent sections, 
we review four cluster validity indices that are considered for 
calibrations. We rationalize the choice of validity index through 
calibration test, which allows us to modify Algorithm 1. The 
extended algorithm (Algorithm 2) determines the fuzzy set 
membership degree of data point xk to submarket vi given 
statistically better value of c and m, rather than given any 
arbitrary c and m.  

3.2.1 Cluster Validity Index 
After an in-depth review of the literature and pilot tests, four 
validity indices are chosen for calibrations. The goal is to assess 
which validity index would provide the most robust method for 
validating clustering results. The four indices are the partition 
coefficient [1], the partition entropy [2], the Xie-Beni Index 
[21], and the SVi index [18]. Their mathematical formulations 
are given in Eq. 4 to 7.  
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3.2.2 Calibration Test Results: How Many Clusters? 
A good validity index should meet the following requirements: 
(1) the index should not exhibit a monotonic tendency with the 
increasing value of c. A monotonic tendency would always favor 
either the smallest or the largest value of c; (2) changes in the 
index value should be relatively stable within the reasonable 
range of c. It is not expected that the index value would exhibit 
an erratic pattern (i.e., pulse-like) for small ranges of c; (3) fuzzy 



  

partitioning results should be somewhat in accordance with 
critical element of xk. For example, spatial arrangement of 
housing submarkets is likely to resemble spatial distribution of 
income to some degree.  

Figure 1 shows typical calibration test results where m is fixed 
to 1.5. Figure 1 plots how the values of validity indices change 
with the increasing value of c as a line graph. The value of the 
Xie-Beni index (shaded in blue with diamond marker) does not 
change either monotonically nor exponentially. Xie-Beni index 
predicts c* at 6 or 7. This pattern is consistent across study set 
(that is 85 metropolitan areas). Empirical tests suggest that the 
Xie-Beni index is most robust.  
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Figure 1 Cluster validity index with c 

3.2.3 Calibration Test Results: How Much to 

Fuzzify? 
Pilot tests for determining m* across a range of m [1, 5] given 
validity indices suggest that the partitioning with m larger than 2 
does not lend itself to an intuitive interpretation of fuzzy set 
membership degree 1 . Thus, m values greater than 2 are not 
considered in this study. In addition, the partition coefficient 
(PC) and partition entropy (PE) are not considered for 
calibration tests because the relation of m with PC and PE is 
predictable2.  

Table 2 tabulates the changing values of two validity indices in 
rows across a range of m in a range [1, 1.9] incremented by 0.1 
in columns. Index value shown in each cell is the minimum 
value among those computed in a range of c [2, cmax] given the 

                                                                 
1 For instance if m becomes larger than 2, test results show that 

membership degree of the most extreme case (let’s say census 
tract k with highest income in a metropolitan area) to a 
particular cluster becomes fairly small (even less than 0.5), to 
the point that census tract k cannot be interpreted as a distinct 
submarket any more. 

2 A large m makes the value of uik less variable (i.e., for instance, 
uik = {0.25, 0.25, 0.25, 0.25} instead of uik = {1, 0, 0, 0}), 
leading to a small value of the partition coefficient and a large 
value of the partition entropy. As a consequence, the smallest 
value of m (i.e., 1) is always favored according these two 
indices.  

m in columns. m* is determined when the index values reach the 
optimum (minimum in the case of two indices shown) over a 
range of m, as underlined in Table 2. Table 3 shows how 
predicted c* values change over a range of m.  According to the 
Xie-Beni index, the optimal fuzziness exponent m* is 1.5 and 
the optimal number of cluster c* is 6. The Svi index predicts 
that the partitioning may be optimal when m = 1.1 and the 
optimal number of clusters is 3. However, the Svi index shows 
the tendency to monotonically increase as m increases.   

 

Table 2 The values of cluster validity indices over a range of 

m  
  1 1.1 1.2 1.3 1.4 1.5 1.6 

UXB 0.354 0.305 0.266 0.239 0.21 0.196 0.222 

SVI/100 0.179 0.178 0.191 0.213 0.247 0.344 0.433 

1.7 1.8 1.9 

0.233 0.487 0.675 

0.429 0.897 0.81 

 

Table 3 provides auxiliary information on the validity of index. 
Stability of c* values over a range of m is considered desirable 
because it is quite unlikely that the optimal number of clusters 
would change abruptly over a range of m values. 6, 7, and 10 are 
candidates for c* according to the Xie-Beni index. On the other 
hand, 3, 6, 7, 10, and 12 are candidates for c* given the Svi 
index which lacks stability of c*.  

Table 3 Optimal number of clusters c* given m 
  1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

UXB 6 7 7 7 7 6 7 7 10 10 

SVI/100 3 3 3 3 3 6 6 7 10 12 

 

It can be noted from Table 2 that the Xie-Beni index values 
exhibit U-curve pattern within the range of m [1, 1.9]. Most 
interestingly, this U-curve pattern was duplicated in other cases. 
It indicates that optimal clustering results can be obtained 
between the range of m values 1 and 1.9. However, readers 
should be cautioned against generalizing it given the number of 
validity index calibrated, and constrained range of m values 
tested. It remains to be seen whether this pattern persists beyond 
the range [1, 1.9] in future research. 

3.2.4 Extended Fuzzy Clustering Algorithm 
Algorithm 1 can be extended to address cluster validity issues 
discussed above. The extended algorithm (Algorithm 2) has two 
more outer loops in comparison with Algorithm 1; one for 
checking the validity index in a range of m, and the other for 
checking the validity index in a range of c. Thus, Algorithm 2 
has three nested loops: m by c by Algorithm 1. The total number 
of iterations will be x*y*z where x is (mmax-1)/minc, y is cmax-2, 
and z is the number of iteration l determined at step 5. It can be 
noted that the choice of validity index v is central to 
internalizing a validation mechanism of fuzzy c-means 
clustering algorithm. 

Algorithm 2 Extended fuzzy c-means algorithm  

Step 1: Initialize the parameters related to fuzzy partitioning:  

c = 2 (2 ≤ c < cmax), m = 1 (1 ≤ m < mmax), where c is an 



  

integer, m is a real number; Fix minc where minc  is incremental 

value of m ( 0 < minc ≤ 0.1); Fix cut-off threshold εL; Choose 
validity index v 

Step 2: Given c and m, initialize U(0) so that it becomes the 
fuzzy matrix. Then at step l, 1 = 0, 1, 2, ….;  

Step 3: Calculate the c fuzzy cluster centers {vi
(l)} with (Eq. 2) 

and U(l) 

Step 4: Update U(l+1) using (Eq. 3) and {vi
(l)} 

Step 5: Compare U(l) to U(l+1) in a convenient matrix norm; if  

|| U(l+1) – U(l) || ≤ εL to go step 6; otherwise return to Step 3. 

Step 6: Compute the validity index 
m

c
v  for given c and m 

Step 7: If c < cmax, then increase c � c + 1 and go to step 3; 
otherwise go to step 8 

Step 8: If m < mmax, then increase m � m + minc and go to step 
3; otherwise go to step 9 

Step 9: Obtain the optimal validity index 
*

*

m

c
v  from 

m

c
v , 

optimal number of clusters c*, and optimal amount of 
fuzziness exponent m*; The optimal fuzzy partition U is 
obtained given c* and m* 

4. RESULTS 

4.1 Descriptive summary  
Algorithm 2 was implemented to identify housing submarkets of 
each of 85 metropolitan areas where Xie-Beni index is set to 
validity index v. 85 metropolitan areas (Figure 2) are random 
samples stratified by four Census Regions (i.e., Northeast, 
Midwest, South, and West) and population (i.e., over a million, 
250K-1 million, 100K-250K, and less than 100K). They include 
75 MSA and 10 CMSA.  
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Figure 2 Study Set: 85 Metropolitan Areas 

 

Being space limited, descriptive statistics of clustering results 
will be presented here. In Figure 3, p denotes the dimension of 
clustering, c_ denotes the optimal number of clusters, and m_ 
denotes optimal fuzziness exponent.  

Descriptive Statistics

85 1 11 4.05 2.464

85 2 10 5.33 2.195

85 1.0 1.9 1.381 .2353

85

p

c_

m_

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

 
Figure 3 Descriptive Statistics of Clustering Results 

 

Before looking into descriptive statistics, readers should be 
warned that the maximum value of c denoted by cmax, in 
Algorithm 2 is set to the minimum value among square root of n 
and 10, instead of squared root of n. It will necessarily set cmax, 
to 10 when n is sufficiently large. The computation time for 
fuzzy classification of very large metropolitan areas such as New 
York or LA, exponentially increases over large values of c. 
Implementing Algorithm 2 over a range of c values greater than 
10 is left to future research. Figure 4 shows frequency 
distribution of m* over 85 empirical cases. The average m* is 
1.38, and the median is 1.4; it indicates that optimal fuzziness 
amount peaks around 1.4 in this particular application. The 
histogram will provide a reference from which the choice of 
appropriate range of m can be made in applications alike.  

 

Figure 4 Histogram of m* derived from 85 empirical cases 

 

To ensure that clustering results do not counter general 
observation, we conduct the correlation analysis between log of 
population and parameter values shown in Figure 3. The 
population of metropolitan areas is positively correlated with the 
dimension of housing market p (Pearson Correlation .835 with 
p-value .000) and the optimal number of clusters c* (Pearson 
Correlation .560 with p-value .000). It indicates that housing 
market of large metropolitan areas is more complex (i.e., more 
factors influencing submarkets formation) and diverse (i.e., 
divided into more submarkets) than small metropolitan areas.  

4.2 Illustrations 
This section illustrates the methodology described in Section 3 
using the case of Buffalo-Niagara Falls MSA (Buffalo 
hereafter). Figure 5 shows how home value is spatially 
distributed over 294 census tracts in Buffalo. Eight (therefore p 
is 8 in this case) variables (among variables listed in Table 1) 
are identified as significant predictors of housing price in 85 
percent of the variation; those are per capita income (pcincome), 
the percentage of college degree holder (college), the percentage 



  

of married couples with children (famcpchl), the percentage of 
detached housing units (hudetp), median year of housing 
structure built (yrhublt), the percentage of non-hispanic white 
(nhwht_p), the percentage of native-born residency status 
(nativebr), and job accessibility (jobacm). The hedonic variables 
are shown in x-axis of Figure 6 in the order listed above.  

Z-scores of the 8 explanatory variables in the Buffalo hedonic 
model form data vector xk. Following step 9 in Algorithm 2, the 

optimal validity index 

*

*

m

c
v

 value given Xie-Beni index is 
0.3385 as double-underlined in Table 4. Therefore, the optimal 
number of clusters is 3, and the optimal fuzziness exponent is 
1.3. It means that the Buffalo housing market is partitioned into 
three submarkets with a fuzziness exponent of 1.3. The second 
best alternative would be five submarkets with fuzziness 
exponent of 1.3 as underlined in Table 4.  
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Figure 5 Choropleth map of median home value in the 

Buffalo-Niagara Falls MSA (Metropolitan Statistical Area) 

 

Table 4 Validity index values v in the matrix c by m in 

Buffalo-Niagara Falls MSA 
c  

m 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

2 0.47 0.46 0.44 8.098 10.4 12.54 14.4 16.1 17.5 

3 0.41 0.39 0.35 0.339 10.8 12.91 14.8 16.4 17.8 

4 0.78 0.71 0.61 0.524 1.32 6.884 7.48 8.04 8.56 

5 0.56 0.56 0.59 0.612 0.47 0.34 0.65 0.69 0.72 

6 0.62 0.76 1.02 0.817 0.69 1.339 1.41 1.48 1.56 

7 0.88 0.69 0.69 0.602 0.62 0.952 2.44 2.63 2.83 

8 0.6 0.59 0.57 0.523 0.4 0.738 0.89 1.24 1.29 

9 0.97 0.62 0.48 0.487 0.85 1.402 1.42 1.83 1.86 

10 0.71 0.6 0.66 0.587 0.59 1.347 1.51 1.69 1.82 

c* 3 3 3 3 8 5 5 5 5 

 

The optimal fuzzy partitioning given c* and m* produces the 
cluster means vi and the membership degree matrix uik. The 

cluster means vi is visualized as parallel coordinate plot in 
Figure 6. A vector of cluster means values of each housing 
submarket in y-axis is graphed as three separate lines across 
eight dimensions in x-axis.  
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Figure 6 Cluster means from the optimal fuzzy partitioning 

of the Buffalo housing market where c*=3, m*=1.3, p=8, 
n=294 

 

Cluster 1 (shaded in red, marked by a circle, and adequately 
named “Settled Suburbia”) in Buffalo is largely characterized by 
moderate to high income, relatively high proportion of married 
couples with children, recently built detached houses, Caucasian 
residents, long residency, and moderate job accessibility. Figure 
7A maps the fuzzy set membership degree of each census tract 
to cluster 1. A majority of census tracts located in outlying areas 
of the metropolitan area are classified to cluster 1 in a large 
extent. Census tracts’ membership degrees to cluster 1 decrease 
toward the central city. 

Cluster 2 (shaded in blue, marked by a rectangle, and adequately 
named “Hard Pressed”) shows the opposite case of cluster 1. 
Residents living in cluster 2 are more likely to be poor, non-
white, single, with lack of higher education. They are also likely 
to live in residential areas largely composed of old attached 
houses, and lack access to job opportunities. The spatial pattern 
of the membership degree to cluster 2 is highly clustered, as 
shown in Figure 7B. Census tracts with high membership 
degrees to cluster 2 are concentrated distinctively in the main 
street corridor linking downtown Buffalo to SUNY South 
Campus (where the 7-mile light railway lies), the west side of 
the City of Buffalo, Lackawana (south of Buffalo), the City of 
Niagara Falls, the northwest side of Lockport, and the Indian 
Reservation of Cattaraugus. 

Cluster 3 (shaded in green, marked by a triangle, and adequately 
named “Prosperous Young Professionals”) shares some 
characteristics with cluster 1; those are income, education and 
ethnic composition (Figure 6). But Cluster 3 is differentiated 
from Cluster 1 by less proportion of detached housing units. 
Cluster 3 is distinct from other two clusters, being characterized 
by high job accessibility (proximity to interstate highway) and 
lower length of residence (high proportion of foreign born near 
SUNY North Campus). A map of the membership degrees to 
cluster 3 is shown in Figure 7C. 

From maps of fuzzy set membership degrees to different 
submarkets, it can be seen that some residential neighborhoods 



  

are highly homogeneous (e.g., Main Street corridor), while 
others are rather heterogeneous (e.g., Amherst area around 
SUNY North Campus). For example, Amherst has relatively 
fuzzy (i.e., 0.5 rather than 0.9) membership degrees to both 
Cluster 1 and Cluster 3; it shares some characteristics of Cluster 
1 and Cluster 3 simultaneously, which can be better examined 
by comparing between Figure 7A and Figure 7C.  

Hardened clusters are plotted in Figure 7D where census tracts 
exclusively belong to one of the three clusters based on the 
maximum membership degree. The hardened cluster map 
summarizes exclusive membership degrees to three different 
submarkets. The other three maps (Figures 7A, 7B, and 7C) 
provide auxiliary information on variation in membership 
degrees to three submarkets that is not revealed in the map of 
hardened membership. 
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Figure 7 Choropleth maps of fuzzy set membership degree to 

three housing submarkets in the Buffalo-Niagara Falls MSA 

 

4.3 Does Fuzzy Clustering Outperform Hard 

Clustering? 

Now the question is “does fuzzy clustering improve classifying 
housing market?” Addressing this question requires reference 
data considered to represent ground truth. Unlike other kinds of 
classification tasks, housing submarkets are not likely to be 
observed to bare eyes, but rather in the eye of experts. 

Groundtruthing can be more appropriately done through 
ethnographic methods. However, the goal of this paper is to 
evaluate the performance of fuzzy clustering in statistical terms. 
This task is supported by sufficiently large degree of freedom. 

To achieve this goal, we compare the sum of squared errors that 
results from exclusive (or hard) partitioning and fuzzy 
partitioning, respectively. The sum of squared errors is the 
weighted sum of intra-cluster variations:  

22

1 1

( )
n c

ik k i A
k i

u x v
= =

−∑∑          (Eq. 8) 

Equation 8 will be denoted by J2 for simplicity hereafter. Large 
J2 means that the clustering algorithm yields less compact 
clusters. Obviously, it is not desirable to have a large J2 statistic. 
Good clustering algorithms should produce clusters as compact 
as possible. Readers can be reminded that the objective of the 
clustering task is equivalent to reducing J2.

3 

As suggested earlier, exclusive clustering can be seen as a 
special case of fuzzy clustering. Fuzzy clustering is reduced to 
hard clustering if the fuzziness exponent m is set to 1. Therefore, 
a hard J2 is computed from the optimal fuzzy partitioning when 
m equals 1. A fuzzy J2 comes from the optimal fuzzy 
partitioning given m*. To control for the effect of other 
parameters, the two J2 statistics are calculated with the same set 
of parameters (except for m), including the number of optimal 

clusters c*, cut-off threshold εL, and so on. The descriptive 
statistics for both hard and fuzzy J2 denoted by j2_hcm and 
j2_fcm, respectively is shown in Figure 8.  
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Figure 8 Descriptive statistics of evaluation measures 

A paired samples test is conducted to evaluate if the mean of 
fuzzy J2 is significantly different (smaller thus more desirable) 
from that of hard J2 . The mean of the hard J2 statistic is 
1026.546 while the fuzzy J2 mean is 745.7332. T-statistics for 
the mean difference of 280.8133 is 2.828 with a p-value of .006. 
The significance test shows that the sum of squared errors 
resulting from fuzzy clustering methods is significantly less than 
that resulting from a hard clustering method. The test confirms 
that fuzzy clustering outperforms hard clustering.  

5. CONCLUSIONS 
This paper demonstrates the potential of fuzzy clustering for 
delineating housing submarkets. Fuzzy c-means algorithm was 
extended such that parameter values c and m can be chosen in a 
non-arbitrary way. The algorithm maps fuzzy set membership 
degrees of census tracts to different housing submarkets per 
metropolitan area.  

                                                                 
3 Indeed, it is same as the objective function of fuzzy clustering 

algorithms shown in Eq. 1, except for the exponent of the 
membership degree. 



  

The results derived from fuzzy clustering and hard clustering 
were compared. The significance test indicates that fuzzy 
clustering yields more compact clusters than hard clustering 
while other factors are controlled for. The study supports the 
premise that fuzzy clustering can enrich the method of (housing) 
market segmentation.  

The empirical tests on the optimal number of clusters c* and 
optimal fuzziness exponent m* suggest that the Xie-Beni index 
is most robust among the sample index tested. The work 
presented in this paper will benefit most from further studies in 
cluster validity index given that the choice of index remains 
open in the extended algorithm (or Algorithm 2). 

Future research would be to incorporate spatial weighting into 
fuzzy clustering algorithms. The adjustment can be made to 
Algorithm 2 in a way that a new fuzzy set membership of 
instance k, Uk

' is updated as  

1
(1 )

n

k k kl l

l

U a U a w U
A

′ = − + ∑
   

where l (not to be confused with iterators in Algorithm 2) 
denotes other instances (not same as k), wkl measures the spatial 
interaction between instance k and l, and a represents relative 
importance of surrounding areas of instance k on a new fuzzy set 
membership value. The higher a is, the stronger the effect of 
neighboring areas is. Initial experimentations over a range of a 
[0, 0.5] indicate that validity index values increase with a value 
of a. It is not surprising given that spatial weighting makes 
partitioning fuzzier, leading to less compact clusters. 
Determining to which degree neighboring areas influence Uk' 
(that is, a), and how to define neighboring areas (that is, wkl) 
depends on scale and data structure. Image segmentation field 
suggests the use of kernel-based method [17]; spatial statistics 
field recommends the use of spatial autocorrelation statistics [6]. 
The marriage between pattern recognition and spatial statistics 
deserves further attention [16].  

This study is not without limitations. The methodology can be 
refined further by noting how parameters c, m, and a interact 
with each other, and how the interaction affects clustering 
results4. The use of better indicators (e.g., average SAT score as 
an indicator of school quality) and crime rate in a finer spatial 
resolution will improve results significantly. Qualitative 
research techniques (such as interview with local realtors or 
long-time residents) can complement statistical validation 
methods presented in this paper.       
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