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1. Introduction 

Humans perceive localities on a daily basis but perception is likely to be 
vague, particularly when it comes to boundaries of localities. In contrast to 
vague human perception of localities, data and operations used in a geo-
graphic information system (GIS) are dominantly based on crisp sets. Due 
to the discrete nature of computing environments, vague concepts preva-
lent in spatial objects (e.g. nearness and other qualitative relations) are usu-
ally forced into discrete constructs. For example, a vaguely stated phrase 
such as “near Chicago” is usually only georeferenced either in or outside 
of Chicago in GIS, although it can be better seen as confidence interval. 
Accordingly, if georeferencing is broadly understood as pinpointing the 
most plausible location intended by users, the reliability of georeferencing 
depends on mental maps of spatial entities and of their mutual spatial rela-
tionships. The problem is that such mental maps lack sharp boundaries of 
localities so that the question comes down to how to best model such inde-
terminate boundaries of localities given the crisp nature of common spatial 
datasets.  

There are two possible approaches to modeling indeterminate bounda-
ries of localities (Robinson 1988). The first approach is purely empirical. 
In short, empirical evidence can be directly collected from those who per-
ceive localities and weaved together to compose boundaries of localities, 
provided that a certain degree of agreement (i.e. consistently overlapping 
boundaries) is met (Montello et al 2003). Second, a hypothetical model can 
be adopted where it is assumed that the location indeterminacy of locality 
is governed by some generally accepted rules (e.g. spatial autocorrelation). 
In this study, the second approach is chosen over the first one because the 
first approach is not feasible when considering the purpose of this study – 
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examining location indeterminacy across multiple localities. In this study, 
fuzzy logic (Zadeh 1965) is applied to geographic databases where fuzzy 
set membership of a locality is determined by (1) absolute distance meas-
ures, (2) qualitative spatial relations, and (3) scale associated with the lo-
cality. 

The model of fuzzy regions allows a vaguely-conveyed locality to be 
georeferenced while it could be considered inadequate to georeferencing 
by a conventional method. When traffic crash data are georeferenced on 
the basis of a fuzzy locality model, the georeferenced data can be used to 
examine the gap between what is perceived and what physically exists. In 
other words, it can help us delineate possible locality boundaries repre-
sented in mental maps. The location indeterminacy of locality is measured 
as the ratio of locality entities that are georeferenced outside of their actual 
boundaries relative to records believed to be in the boundary. The variation 
of location indeterminacy may be associated with some characteristics of 
localities. Analysis of variance examines if location indeterminacy can 
vary by different neighborhood types such as urban versus rural area.  

This study can help address the following related research questions: 
Can we represent the perceptual environments (e.g. mental maps) in a 
crisp-set based computing environment (e.g. GIS)? Is a fuzzy-set approach 
promising in accomplishing this task? What kind of factors do we have to 
take into account to represent mental maps in GIS? How can it be imple-
mented in GIS? To what extent are humans confident in identifying the 
boundary of a locality? Does the level of confidence vary with certain 
characteristics of localities (such as urban versus rural)?  

The research objectives of this study are twofold: One is to model inde-
terminate boundaries of localities by applying the concept of fuzzy sets to 
geographic databases; the second is to examine if the location indetermi-
nacy of localities significantly varies by the urban versus rural settings. 
The rest of this paper is organized as follows: Sect. 2 reviews background 
issues for the problems in hand. In Sect. 3, we will discuss how to model 
indeterminate boundaries of localities in GIS. Sect. 4 presents the results of 
an empirical analysis to compare the mean of location indeterminacy be-
tween urban and rural areas. In Sect. 5, analysis results are interpreted and 
the project is summarized. 

2. Background 

Let us consider traffic crash sites where police officers compile required 
information in an accident report. The typical way of recording accident 
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location is either by means of a linear referencing system (LRS) for high-
way accidents (which is not considered in this study), or by reporting the 
names of the roadway and locality where the crash occurred. As illustrated 
in Fig. 1, an accident report does not necessarily reflect what is out there 
as it actually is; In particular, accident location is captured through the 
cognitive and perceptual filter of filing officers. Moreover, police officers 
are often forced to make crisp judgment on vague perception and cognition 
in response to rigid requirements of coding forms. This study is particu-
larly focused on the vague perception and cognition of locality boundaries. 
Given the spatial resolution of data used in this study, the type of locality 
we address is confined to local jurisdiction (e.g. City of Buffalo). The cen-
tral issue of this study is depicted in Fig. 1. In the lower right corner of this 
figure, the CITY column suggests a spatial relation in, but it can be argued 
that near also applies under uncertainty. 

 

 
Fig. 1. How accident location is recorded: losing certainty 
The example of accident coding form is adapted from NHTSA (1995) 
 

Mental maps can be seen from different levels of abstraction – idiosyn-
crasy versus general principles. As for idiosyncrasy, mental maps vary 
with individuals – their unique experiences, preferences, and the level of 
familiarity with areas (Gould and White 1986, Thill and Sui 1993). Thus, it 
is hardly amenable to generalization. Similarly, mental maps may be af-
fected by unique characteristics of surroundings. For instance, people may 
find it easier to identify the boundary of localities surrounded by a water 
body (e.g. island, peninsular) or high mountains (e.g. river basin). Besides, 
it is easy to identify a locality with salient characteristics (e.g. Paris with 
Eiffel Tower). All these exemplify specifics of cognitive mapping of local-
ity.  
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In contrast, properties inherent to a geospatial object determine the de-
gree to which its boundary is perceived with vagueness. First, the degree 
of belonging to a certain locality declines as the distance to the locality in-
creases (similar to Tobler’s First Law of Geography). That is, it is a func-
tion of Euclidean distance or some other measure of spatial separation 
(Yao and Thill 2004). This is widely accepted, but this alone cannot ex-
plain irregular or asymmetric form of indeterminate boundaries. Second, it 
is affected by spatial qualitative relation. In Fig. 2, suppose that A and B 
are within the indeterminate boundaries of the locality of Syracuse. Loca-
tion A may be perceived less near Syracuse than B due to the intervening 
locality of Geddes between A and Syracuse (Ullman 1956). Third, it is 
scale-dependent (Goodchild 2001). The size or hierarchy of referents mat-
ters (Gahegan 1995). For example, Buffalo, NY is near Syracuse, NY at a 
regional scale but the two localities cannot be considered near at the local 
scale. The three properties mentioned above are key determinants of loca-
tion indeterminacy of locality.  

 

 
Fig. 2. The effect of qualitative spatial relation on nearness 

 
It can be noted that this study addresses localities with official recogni-

tion in contrast to localities with informal recognition such as vernacular 
regions (e.g. Midwest) (Zelinsky 1980). Moreover, accident reports are 
filled in by police officers who are presumably familiar with surrounding 
areas, so that the variation of mental maps on an individual basis is rea-
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sonably controlled for. In that sense, the results of this study should not 
simply be seen as representative of a statistical sample, but as conservative 
when it comes to location indeterminacy of locality. 

3. Modeling Location Indeterminacy of Locality 

Let us consider locality l to be a kind of fuzzy region. As such, it is de-
noted as Ãl. Ãl is composed of the following three parts: Core, Boundary, 
and Exterior (also known as egg-yolk model; Cohn and Gotts 1996). These 
parts are defined as crisp regions (regular closed sets) denoted by regc. 
Also let ℜ2 denote the two-dimensional geographic space, and let the 
fuzzy-set membership function of Ãl be µÃl. Ãl and µÃl are defined as fol-
lows: 

 
Ãl = Core(Ãl) ∨ Boundary(Ãl) ∨ Exterior(Ãl) 
Core(Ãl) = regc ({(x,y) ∈ ℜ2  |  µÃl (x,y) = 1}) 
Exterior(Ãl) = regc ({(x,y) ∈ ℜ2  |  µÃl (x,y) = 0}) 
Boundary(Ãl) = regc ({(x,y) ∈ ℜ2  |  0 < µÃl (x,y) < 1}) 
 

The core identifies the part of the region that definitely belongs to Ãl. 

The exterior determines the part that definitely does not belong to Ãl. The 
indeterminate character of Ãl is summarized in the boundary of Ãl in a uni-
fied and simplified manner (Erwig and Schneider 1997; Schneider 1999). 
The core and boundary can be adjacent with a common border, and core 
and/or boundary can be empty. When the boundary is an empty set, Ãl be-
comes a crisp region. Thus, a crisp region is a special case of a fuzzy re-
gion. 

The question boils down to delineating the nonempty set boundary, 
which is illustrated in Fig. 2. Where the function named FirstOr-
derHNGroup(x) is defined on the set of neighbors which “meet” locality x, 
where each neighbor has the same spatial resolution level as x (HN is the 
abbreviation of HorizontalNeighbor in the sense that the function results in 
a group with the same resolution level as x). For example, x and its consid-
ered neighbors should belong to the same level of administrative boundary 
(e.g. city, county, state). SecondOrderHNGroup(x) is defined on the set of 
neighbors which “meet” FirstOrderHNGroup(x) at the exclusion of x. The 
term “meet” is one of the spatial relation predicates defined in Egenhofer 
and Franzosa (1991) to extend Allen’s (1983) temporal logic to the spatial 
domain. The exterior of FirstOrderHNGroup(x) becomes the 0.5-cut 
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boundary. Accordingly, the fuzzy set membership value for boundary can 
be redefined as follows: 

 
µÃl (x,y) = [0, 0.5]  if (x,y) is in SecondOrderHNGroup(l)  
µÃl (x,y) = [0.5, 1]  if (x,y) is in FirstOrderHNGroup(l) 
 
To compute the continuous and linear1 fuzzy-set membership value in 

Boundary(Ãl), we create a Delaunay Triangulation whose nodes are com-
prised of any vertices on core, 0.5-cut boundary, and exterior. Fig. 3 illus-
trates two nodes on the 0.5-cut boundary, and one node on core. The 
membership value is obtained by intersecting a vertical line with the plane 
defined by the three nodes of the triangle as shown in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. TIN surface created to interpolate fuzzy set membership value 
 
In Fig. 3, the generalized equation for linear interpolation of a point (x, 

y, z) in a triangle facet is Ax + By + Cz + D = 0, where A, B, C, and D are 
constants determined by the coordinates of the triangle’s three nodes. 
Thus, the fuzzy set membership value can be obtained from the following 
equation given the x- and y- coordinates: µÃl (x,y) = (-Ax –By – D) / C. 

As illustrated in Fig. 4, a continuous membership value between 1 and 
0 is computed in the indeterminate boundary (Wang and Hall 1996; Stefa-
nakis et al 1999). In Figure 4, the locality Buffalo has a full membership in 

                                                      
1 Some studies on nearness suggest that the relationship between distance and 

nearness can be approximated by a linear relationship (Gahegan 1995). An s-
shaped function has also been proposed (Worboys 2001). 
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its core, a partial membership in its boundary (e.g. Amherst), and no 
membership beyond exterior (e.g. Alden).  
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Fig. 4. Fuzzy set membership of locality Buffalo, NY 

4. Empirical Analysis of Location Indeterminacy of 
Localities  

This section presents location indeterminacy revealed in a time series of 
8631 traffic crashes that occurred between 1996 and 2001 in New York 
State and compiled at the accident level in the Fatal Accident Reporting 
System (FARS) (NHTSA 1995). Of these, 5460 cases2 are considered for 
examining location indeterminacy. First, crash records in the dataset are 
georeferenced  by taking into account uncertainty (e.g. incompatible name 
of roadway between FARS and reference database, nearness implicit in 
identifying locality) (Hwang and Thill 2003). Second, the geographic loca-
tion of a georeferenced record is compared with locality information given 
in the original FARS data record. The discrepancy between them may in-

                                                      
2 Excluded cases are composed of 2053 cases georeferenced by LRS, 614 cases 

with invalid code for locality matching (e.g. null or incorrect code), and non-
geocodable cases (504).  
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dicate location indeterminacy of the concerned locality. If a record is geo-
referenced exactly in the locality as given in the original data (i.e. no dis-
crepancy), fuzzy set membership becomes 1. If a record is georeferenced 
to the indeterminate boundary of the locality (that is, near locality), fuzzy 
set membership becomes any value between 0 and 1 based on the defini-
tion of fuzzy set membership function described in sect. 3. 

Fig.5. graphs 5460 cases by reference data (Place_PL or Place_PT3), 
and locality matching criteria (In or Near). Near-cases account for 12.4% 
(677/5460). This means that police officers misidentify the locality of car 
crashes 12.4% of the time. But it should be noted that it is a very conserva-
tive estimate because the total count of 5460 usable cases only accounts 
for cases that are georeferenced with a reasonably good quality (i.e. data in 
poor quality is more likely to have near-cases).  
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Fig. 5 Probability of pinpointing localities exactly (in) versus roughly (near) 

Source: FARS accident level data (1996-2001 New York State) 
 
In the third of the analysis, location indeterminacy of locality i is com-

puted as follows: ρi = 1 - (�µi)/n where µi is the fuzzy set membership 
value of locality i for each record, and n is the total number of records that 
are reported to occur in locality i. To illustrate this, consider the three dif-
ferent scenarios in Fig. 6. Fuzzy set membership value 1 is assigned to ac-
cidents within Core, and [0,1] is assigned to accidents in Boundary. It is 

                                                      
3 Place_PL corresponds to County Subdivisions in U.S. Census terms. On the 

other hand, the polygon boundaries of Place_PT are usually not well –defined. 
Thiessen polygons drawn around centroids derived from hardcopy maps are 
used as a proxy of polygon boundary if unknown. 
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shown that B has the lowest location indeterminacy 5% while C has the 
highest location indeterminacy 42%.  

 

 
Fig. 6 Illustration of computation of location indeterminacy of locality 

 
Finally, localities are classified as urban or rural4 in an attempt to ex-

amine if location indeterminacy can vary by neighborhood types. The av-
erage number of fatal crashes that occurred during the study period in rural 
areas is 2 (612 accidents / 298 localities), while that of fatal crashes in ur-
ban areas is 16 (3822 accidents / 246 localities). The mean value of loca-
tion indeterminacy for rural localities turns out to be 0.1165, which com-
pares to 0.0966 for urban localities.  

At first glance, the difference appears to be trivial, but interpretation of 
the location indeterminacy rate of rural areas requires some caution be-
cause of the small number problem (Kennedy 1989). That is, location inde-
terminacy rate is highly variable when the number of crashes within an 
area is rather small. To work around the small number problem, we con-
vert observed rates to empirical Bayes estimates in a way that prior distri-
bution is taken into account (Bailey and Gatrell 1995). Consequently, 
somewhat unreliable values of location indeterminacy are smoothed out 
while relatively reliable values are expected not to change much. Instead 
of adjusting for overall distribution, two sets of observed rates (which is 
urban versus rural) are adjusted for their within-group distributions be-
cause of significant difference in their respective overall patterns.  

Table 1 presents descriptive statistics of location indeterminacy value 
for urban and rural areas, after adjustment for the overall pattern of loca-

                                                      
4 Depending on the spatial definition of Urbanized Area (U.S. Census Bureau 

1999).  
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tion indeterminacy within each group. It indicates that people are 94% (or 
somewhere between 93% and 95%) sure in identifying urban localities 
while they are 88% (or somewhere between 86% and 90%) sure in identi-
fying rural localities. It means that the boundary of rural areas is perceived 
6% less accurately than in urban areas. 

 
Table 1. Descriptive statistics of Bayesian estimates of location indeterminacy 

value: comparison between urban locality and rural locality  
     95% Conf. Interval for Mean 
 N Mean Std. Dev Std. Error L Bound U Bound 

Urban  246 0.0597 0.0631 0.0040 0.0518 0.0677 
Rural 298 0.1178 0.1759 0.0102 0.0977 0.1378 
Total 544 0.0915 0.1399 0.0060 0.0798 0.1033 

 
Analysis of variance (Table 2) conducted on Bayesian estimates of lo-

cation indeterminacy confirms the difference between urban versus rural 
locality in terms of location indeterminacy is significant (F-statistics 
24.209). Therefore, it can be concluded that the boundary of localities is 
perceived differently depending on neighborhood types. The interpretation 
and implication of this empirical analysis will be given in the next section.  

 
Table 2. The result of analysis of variance (One-way ANOVA) conducted on 

544 localities grouped as urban or rural.  

  
Sum of Squares 

 
df 

 
Mean Square 

 
F 

 
Sign. 

Between Groups 
Within Groups 
Total 

0.454 
10.170 
10.624 

1 
542 
543 

0.454 
0.019 

24.209 0.000 

 

5. Conclusions 

The result of analysis of variance sheds some light on our initial hypothe-
sis that mental maps on urban settings may be less error-prone than those 
on rural settings. It is maybe because city provides more landmark or route 
upon which judgment on indeterminate boundaries of localities can be 
based. As suggested by Golledge et al (1995), direct experience (e.g. navi-
gation) on geographic space helps humans acquire ultimate spatial knowl-
edge (e.g. survey knowledge). Under the theory of spatial knowledge ac-
quisition, it can be argued that urban settings provide more favorable 
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conditions for forming consistent mental maps. The empirical study pre-
sented in this paper supports this idea.  

Moreover, it may be worthwhile considering characteristics of localities 
as a fiat spatial object (Smith 1995). According to Smith, a fiat object, 
unlike other physical environments (e.g. mountain, lake) does not exist in a 
physical way (thus intangible); rather it is the outcome of human concep-
tualization. Therefore, any factors considered to facilitate human concep-
tualization may refine our mental maps. One of them is a scale factor. 
Identifying localities (here we focus on “unity condition” (Guarino and 
Welty 2000) – what composes localities as a part-whole relation) becomes 
easier at a micro-scale. As urban settings are denser, they provide a rea-
sonable scale in which humans can conceptualize localities without much 
difficulty. Conversely, a highly dispersed pattern of settlements constitutes 
rather challenging environments in which humans can conceptualize lo-
calities as a whole.  

In summary, we built a hypothetical model of localities in a way that lo-
cation indeterminacy is incorporated as a fuzzy set membership value. As 
evident in a multi-year empirical datasets of traffic crashes in New York 
state, location indeterminacy of spatial objects seems to prevail, even 
though we deal with spatial objects with official recognition. Moreover, 
the confidence level in identifying localities may vary with neighborhood 
types. That is, people are found to be 6% more confident in identifying ur-
ban areas than rural areas. Boundaries of rural areas are perceived more 
vaguely and variably than urban areas. 
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